
2014 구조물 내진설계 경진대회

- 설계 제안서 -

강원대학교 건축공학과

목차

- 1. 팀 및 조원 소개
- 2. 설계 개요
- 3. 설계 조건
- 4. 설계 컨셉
- 5. 경제성 검토

BUIT

[명사] 동료;

같은 학년으로써 같은 지식을 쌓아가는 우리를 표현한 단어이며 모두 함께 오래 버티자는 의미로 위와 같은 이름을 짓게 되었다.

1. 팀 및 조원 소개 자문교수님 및 팀원 소개

팀장, 총괄

컨셉설정, 프레젠테이션

자문교수님, 강원대학교 구조공학전공

자료조사

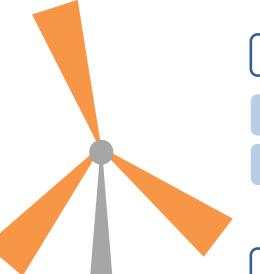
모델링

2. 설계 개요 개요 및 목적

개요

주제 지진이 발생할 경우 풍력발전구조물의 내진설계

특징 세장비가 크고 무게중심이 높은 pole 구조물


설계 목적

주어진 재료의 특성과 형상을 이용한 경제적인 최적설계를 이룬다.

경제성 안정성 (강성) 안전성 (강도) 최종 목표

2. 설계 개요 풍력발전기란?

바람이 지니고 있는 운동에너지를 전기에너지로 바꿔주는 장치

특징

풍력발전을 위해 구조물의 상부에 발전장치가 설치되는 형태 날개 / 변속장치 / 발전기의 세 부분으로 구성

취약점

높은 세장비때문에 하중 중심이 높은 곳에 위치

주로 바다에 설치

풍력발전에 유리하도록 높이가 높고 발전기가 큰 형태

3. 설계 조건 제한조건

사용가능한 재료

접착제

종이

나무

면줄

탄성이 거의 없거나 아예 탄성이 없는 재료

저항력

종이

면줄

압축력에는 저항하지 못하고 인장력에만 저항

길이의 제한

MDF strip

600 mm

A4

297 mm

면줄

600 mm

▶ 부재의 길이 연장으로 인한 접합부 발생이 불가피함

4. 설계 컨셉 종이 가새

인장에만 저항하는 재료

면줄

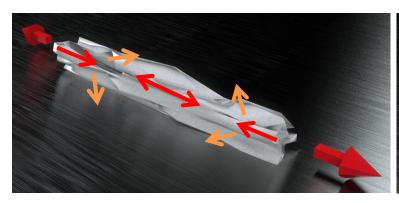
재료의 특성상 많은 수량이 요구될 것으로 예상되어 경제성을 만족시키지 않는다고 판단

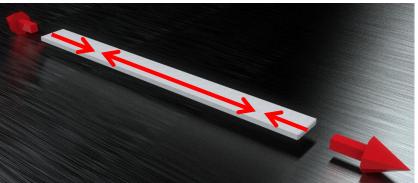
종이

순수하게 면내력에 저항하도록 계획 가능하다고 판단

선택

재료의 가공 형태

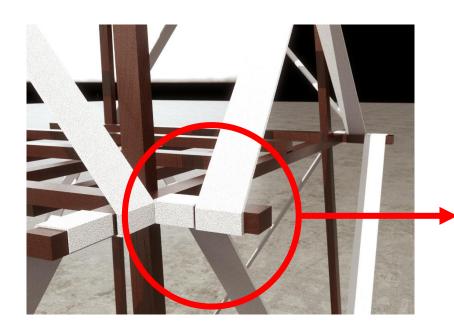

구겨진 경우


종이를 구기면 그 위치의 원자들의 배열이 물리적으로 변화되어 인장에 저항하는 능력이 저하되며 구겨진 종이는 면내력의 일부가 면외력으로 변하므로 저항할 수 있는 내력 감소

접는 경우

순수하게 면내력으로만 저항 가능

선택



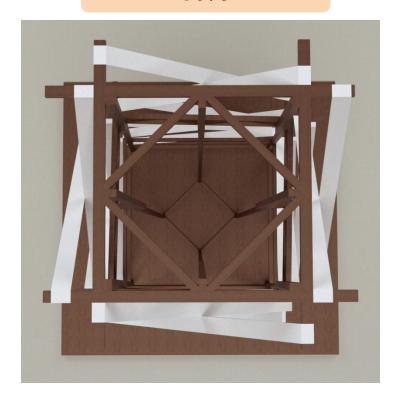
4. 설계 컨셉 종이 가새

가새의 저항 형태

X자 형태로 모든 방향에 설치함으로써 어떤 방향으로 힘이 작용해도 저항할 수 있도록 함

종이 가새가 부재를 여러 번 감싸는 형태로 접합

4. 설계 컨셉 보강 부재 설치

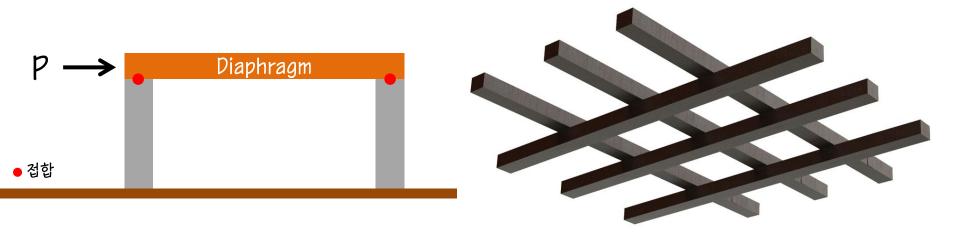

2번의 경우, 1번에 보강 부재를 설치하여 횡력에 더 잘 저항할 수 있는 형태 보강 부재를 설치하는 높이는 가새로 사용하는 종이의 길이가 정해져 있기 때문에 종이 길이에 맞춰 설치할 수 있도록 한다.

선택

* 상세 설계를 통해 검토 예정

4. 설계 컨셉 Core and Diaphragm

Core

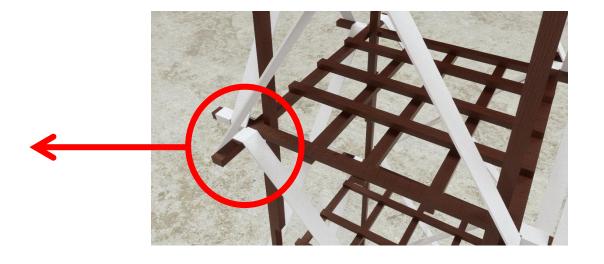


스트립을 이용한 Core보다 Diaphragm을 이용해 전체적으로 하나의 거동을 하도록 하는 것이 더욱 효과적일 것으로 판단

4. 설계 컨셉 Core and Diaphragm

Diaphragm

횡방향 하중을 전달하는 데 사용되는 구조 시스템



경제성과 가공성을 고려하여 Plate가 아닌 Strip을 사용하여 Diaphragm 구성

판과 같은 역할을 할 수 있도록 Strip을 십자 모양으로 배치

4. 설계 컨셉 접합부 보강

보다 안전하게 가새를 연결하기 위해 부재를 설계된 길이보다 길게 가공

* 접합부에 면줄과 접착제를 사용하는 방법에 대해 두 가지 대안 검토 중

대안 1

VS

대안 2

4. 설계 컨셉 장방형 형상

접합 선택

보강해야 하는 부분을 최소화하기 위해 장방형 형태를 채택

5. 경제성 검토

재료명	단위	수량	단가 [원]	금액 [원]
기초판	개	1	-	-
MDF Strip	개	20	10,000,000	200,000,000
MDF Plate	개	1	100,000,000	100,000,000
면줄	식	72	10,000,000	720,000,000
 A4용지	장	35	10,000,000	350,000,000
접착제	개	3	200,000,000	600,000,000
합계 [원]	1,430,000,000			

^{*} 위 재료 산정은 모든 재료를 최대로 사용할 경우로 가정했기 때문에 실제로는 더 적은 금액으로 경제성을 만족할 수 있을 것으로 보인다.

